eQUAD Battery Sizing and Selection Considerations

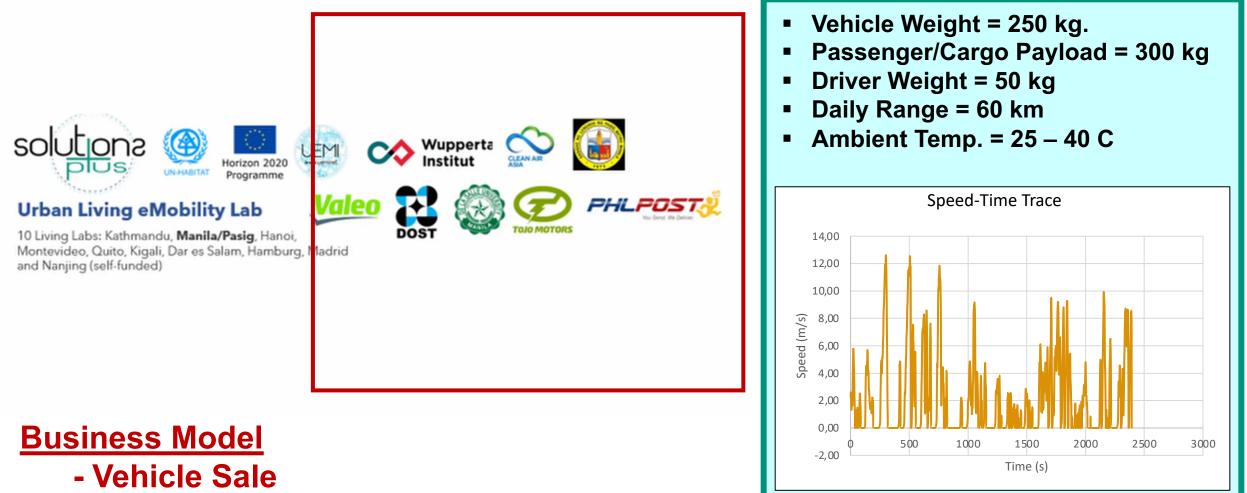
TOJO MOTORS

Executive Dean Enrique Razon Jr. Logistics Institute De La Salle University

Executive Director Electric Vehicle Association of the Philippines

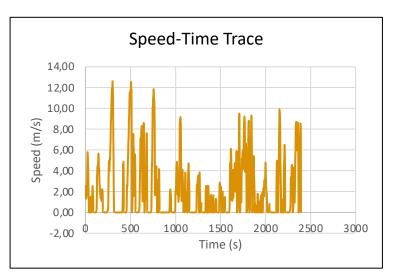
Technology Adviser Tojo Motors Corporation

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no 875041


Outline

- Vehicle Design Project
- Key Considerations
- Battery Sizing Methodology and considerations
- Fast or Slow Charging?
- Cooling System
- Smart Features
- Some Key Points

The Vehicle Design Project



- Vehicle Sale + Battery Leasing
- Vehicle Leasing
- Transport Service Leasing

Battery Sizing Methodology

1. Gather and load speed time trace

2 Input Vehicle parameters

Technical Parameters Vehicle Curb Mass (kg) Passenger Mass (kg) Average Number of Passengers inc driver (based on 82% load factor) Total Passenger Mass (kg) Cargo Mass (kg) Charge-Discharge Efficiency Mechanical Efficiency Motor Efficiency Tire to Road Friction Factor (f) Drag Coefficient (Cd) Frontal Area (m2) Tire diameter (m) Car aircon power (kW) Battery Depth of Discharge (DOD) Current Battery Pack Voltage (V) Discharge Rating (xC) assuming 1.25 safety factor Target Vehicle Range (km)

3 Define Drive Train parameters (Motor Power, rated speed and over-all gear ratio)

Drive Train Specifications

Rated Power (kW) Rated Torque (N.m) Rated speed (rpm) Over-all gear ratio

6	
19.10	
3000	
15	

4 Generate Minimum Battery Specs

Output

250

70

5

300

95%

95%

0.01

1.00

2.00

0.61

0.00 20%

48.00

2.40

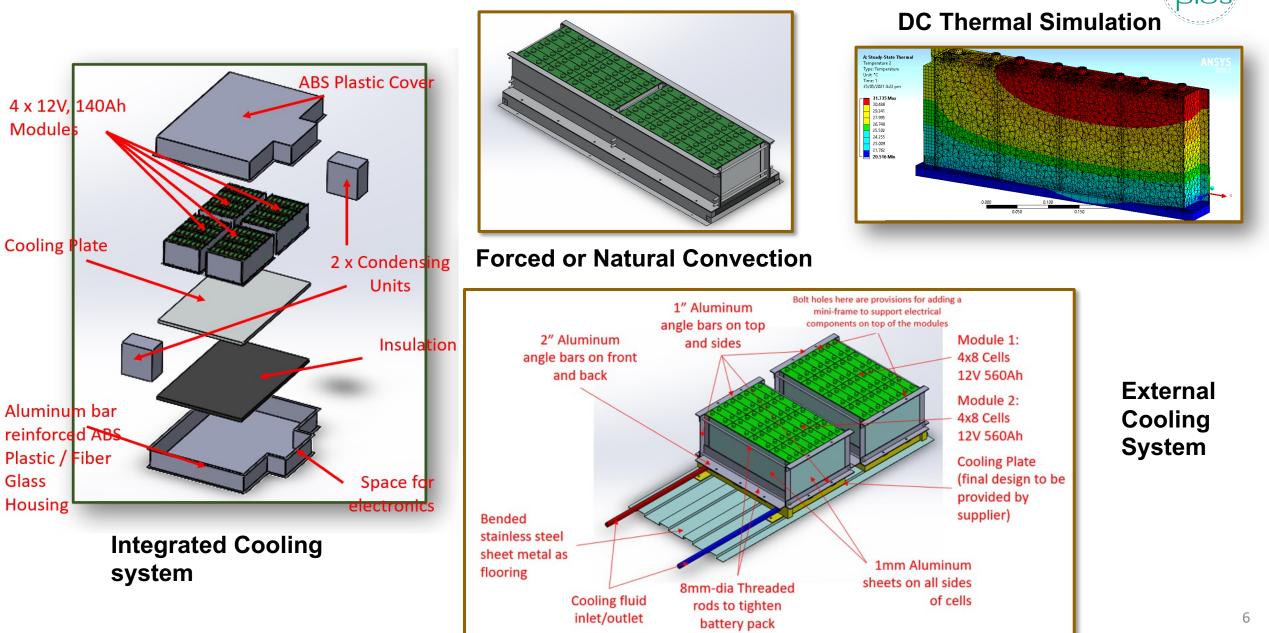
60.00

Max Current discharge (A) 182.94 Energy Economy (km/kWh) 14.73 Minimum Battery Size Based on Discharge Rate (kWh) 3.66 Minimum Battery Size Based on Range (kWh) 5.09 **Recommended Minimum Battery** Capacity (kWh) 5.09 Battery Module Voltage (V) 48.00 Minimum Battery Module Capacity (Ah) 106.08 Minimum Battery Energy Capacity (kWh) 5.09 **Estimated Range Between Charge** (km) 60.00 Recommended Over-all Gear Ratio 15

Fast charging vs Slow Charging Batteries

	Economics	Operatiions			
Battery Option	Cell Upfront Cost (Php)	Range (km)	Charge per Day	Charging Time (min.)	
LFP	39,286	60.0	1	180	
LpTO	55,556	40.0	2	60	
LTO	<mark>61,667</mark>	30.0	2 to 3	30	

 Small Daily Range Requirement


- There is enough space
- Cheaper upfront
- No need for charging inbetween runs

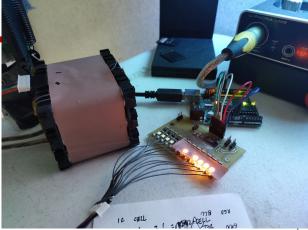
When to go Fast Charging?

- High daily mileage
- Physical space restrictions
- Continuous operations
- Wide operational area

Battery Pack and Cooling System Design

<u>sno]</u>i

Smart Features



Business Model

- Vehicle Sale
- Vehicle Sale + Battery Leasing
- Vehicle Leasing
- Transport Service Leasing

Required Battery System Features

- Battery Location Tracking
- Remote real time state of charge (SOC) tracking
- Cell level condition monitoring
- Charging encryption
- Remote management capability
- Enhanced physical security and remote intrusion detection

Key Points

- Electric Vehicle Battery Selection needs to take account of vehicle performance requirements, operational characteristics, Business model and economics
- Battery sizing should satisfy both peak discharge and range requirements
- Battery type should take strong account of operational requirements and economics
- Cooling system should account for DC, climate conditions and practicality
- Battery module smart features to depend on business model and operational requirements

[Thank You]