

SOLUTIONSplus Summer School

Module 5: Introduction to Electric Micromobility

November 16th, 2020

Nikolai Falter

Institute for Automotive Engineering (ika) – RWTH Aachen University

153590 ⋅ 20gwi0027.pptx Slide No. 1 2020/11/16 © ika 2020 ⋅ All rights reserved

Agenda

- Introduction
- Market Overview
- Technical Solutions

Introduction

Questions to be Answered within This Webinar

Which types of vehicles will this webinar focus on?

• What are relevant requirements from a user and technical perspective?

 What are general market characteristics and which requirements do they imply?

Which requirements result from existing vehicles and mobility services?

Classification of Focus Vehicle Types Vehicle Categories According to UNECE Reg. No 168/2013

Relevant vehicle classes

Category	Pedelec	E-Scooter	L1e	L2e	L3e	L4e	L5e	L6e	L7e	M1 (Smart)
Category name	Pedal electric cycle	EKF (electric small vehicle)	Light two-wheel powered vehicle	Three-wheel moped	Two-wheel motorcycle	L3e + side-car	Powered tricycle	Light quadricycle	Heavy quadricycle	Motor vehicles
Length			Depending on sub-category up to 4,000 mm						2,500 mm	
Width			Depending on sub-category up to 2,000 mm						1,510 mm	
Height			Depending on sub-category up to 2,500 mm						1,520 mm	
Number of wheels			2	3	2	2 + side car	3	4	4	4
Maximum design vehicle speed	≤ 25 km/h (with electric motor support)	≤ 20 km/h	L1e-A ≤ 25 km/h others ≤ 45 km/h	≤ 45 km/h	No speed limit	No speed limit	No speed limit	≤ 45 km/h	L7e-B1&L7e-C ≤ 90 km/h	135 km/h
Maximum continuous power	≤ 250 W	≤ 500 W or ≤ 1,400 W if balancing requires 60 %	L1e-A ≤ 1 kW others ≤ 4 kW	≤ 4 kW	No power limit	No power limit	No power limit	L6e-A ≤ 4 kW, L6e-B ≤ 6 kW	L7e-A, L7e-B2, L7e-C ≤ 15 kW	30 kW - 55 kW
Mass in running order			Tech. permis. mass decl. by manufacturer	≤ 270 kg	Technically permi declared by the m		≤ 1,000 kg	≤ 425 kg	≤ 450 / 600 kg dep. on category	720 kg - 805 kg
Seats	9 342			≤ 2		≤ 4 motorcycle + side car (≤ 2)	≤ 5	≤ 2	≤ 4	2
		T								

Introduction

Examples for typical Micro Mobiles on Asian and African Market

Source: enelx.com

Autoriksha Service in Cambodia Source: Khmer Times

Motorcycle tuk-tuk in Cambodia Source: Kh

Chinese autoriksha

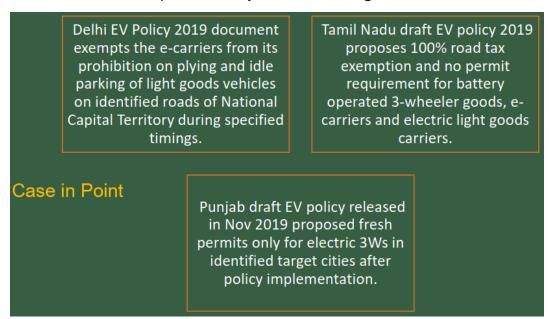
Light motorcycle Bajaj BS6 CT100

Electric scooter Chetak

153590 · 20gwi0027.pptx Slide No. 5 2020/11/16 © ika 2020 · All rights reserved

Classification of Focus Vehicle Types

Example: Electric Vehicles in India



Category	L3	L5N		
Category name	E-carts	three-wheeled motor vehicle		
Area of application	India	India		
Width				
Height				
Number of wheels		3		
Maximum design vehicle speed	≤ 25 kph	> 25 kph		
Maximum continuous power	≤ 2 kW	≤ 500 W or ≤ 1400 W if balancing requires 60 % thereof		
Mass in running order	310 kg + driver	1500 kg incl. driver, excl. weight of batteries		
Seats				

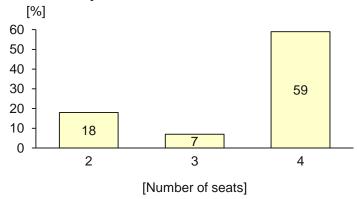
- Similar classification system as in Europe
- Vehicle classes derivated from classes of ICE-powered vehicles

\$ Incentives for electric vehicles in India

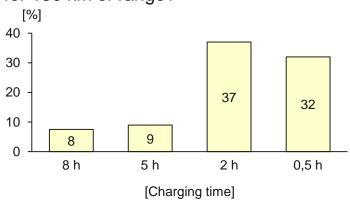
- Indian central governments FAME II policy scheme incentives purchase of electric vehicles with Li-Ion battery depending on vehicle characteristics, aiming to close the price gap to ICEpowered alternatives
- Further incentives provided by Indian state governments:

Source: Evreporter.com

Source: Evreporter.com

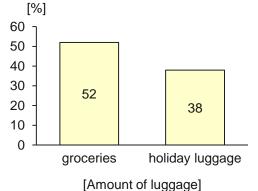

Introduction

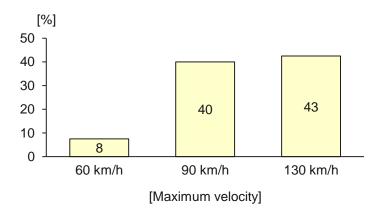
User Requirements on Micro Mobiles



An online survey on user needs for the EU-funded epsilon project revealed the following (selected) results:

If you would buy an electric micro mobile, what would be your favourite number of seats?


What would be an acceptable charging time for 150 km of range?



Source: epsilon-project.eu

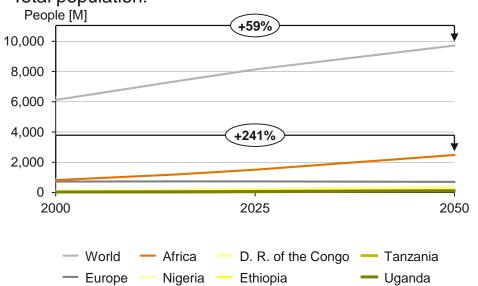
Which amount of luggage must fit into the luggage compartment?

Which minimum v_{max} should be possible?

Agenda

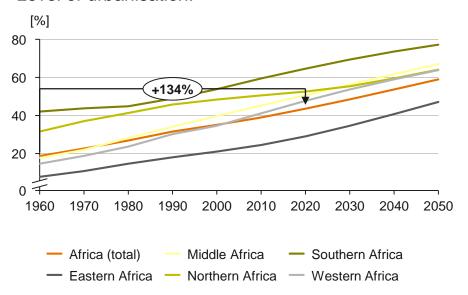
- Introduction
- Market Overview
- Technical Solutions

Market Overview: Africa


Population

Population

Total population:



- Africa's population will grow four times faster than the World's population until 2050
- Five out of nine countries with highest absolute population growth are African

Urbanisation

Level of urbanisation:

- Urbanisation increased over the last decades and is still growing, which implies smaller travel distances but higher traffic density
- Nearly 60 % of African population is expected to live in urban areas in 2050, nearly 80 % in Northern Africa

Sources: Bundeszentrale für politische Bildung / United Nations, Department of Economic and Social Affairs, Population Division (2018). World Urbanization Prospects: The 2015 & 2018 Revision, Online Edition; OECD;

Market Overview: Africa Vehicle Market & Mobility Behaviour

- Small (but growing) domestic motor vehicle industry, nearly all vehicles are imported
 - Low rates of car ownership: 2-28 cars/1,000 people in major markets Ethiopia, Kenya and Nigeria (2015)
 - Passenger cars: often used vehicles (80-90 % of fleet) from USA, Europe and Japan, subject to high import duties
 - Approx. 1.55 M new vehicle sales (PC & CV) in Africa in 2015
- Transport is relatively expensive in Africa, car ownership is not affordable for wide parts of the population:

Average costs per commute

Source: Medium.com

- Alternative: Light two/three wheelers, mainly imported from Asia (China, Japan, India)
- CAGR of 12% is expected for African two-wheeler market until 2025
- For the uprising classes, two- or three wheelers are often the first owned motorised vehicle

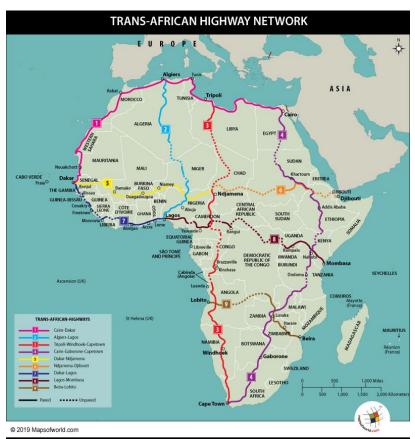
Mobility Behaviour

- Mobility behaviour depends on income:
 - Still a high number of trips is made by walking
 - Motorcycle taxis and informal transportation services are very popular in cities, as officially provided public transport is inadequate
- For motorized transport, road transport is dominant (80 % of goods, 90 % of passengers)

Source: Umaizi.com

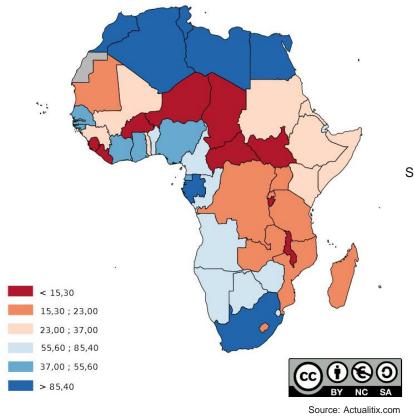
 Due to growing smartphone adoption, innovative services are on the rise: already more than 50 e-ridesharing services in 21 African countries

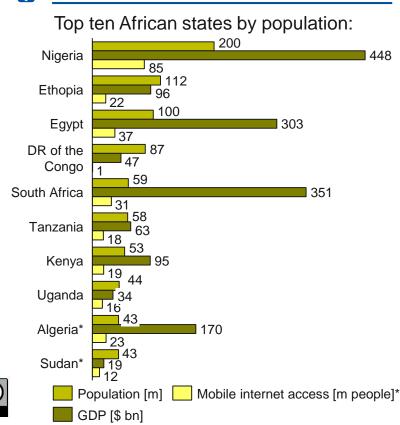
Sources: Reportlinker.com: Medium.com: Deloitte


Market Overview: Africa

Infrastructure

A


Road Traffic Infrastructure



 High share of unpaved road, especially in suburban and rural area

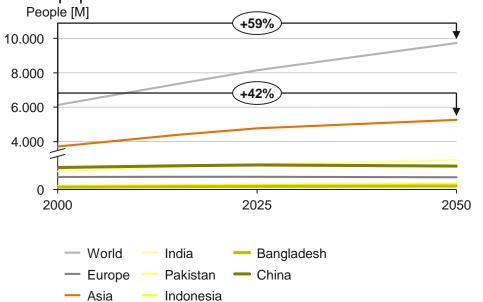
Access to Electricity (% of Population)

Mobile Internet Access

 No comprehensive electricity supply in most African states Mobile internet access depends on GDP and reaches about 50 % in best case

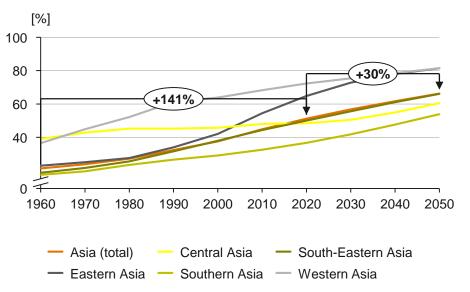
> *estimated values for Algeria and Sudan Sources: Statista, Worldbank

Market Overview: Asia


Population

Population

Total population:

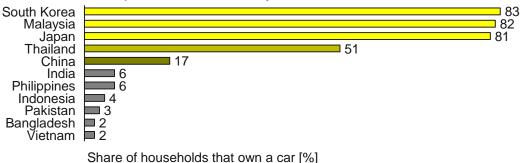


- Asia will stay the continent with the biggest population with nearly
 5 B people in 2025
- The populations of countries as India, Pakistan, Bangladesh or Indonesia are expected to keep continuously growing until 2050

Urbanisation

Level of urbanisation:

- Urbanisation increased over the last decades and is still growing, especially in South-Eastern Asia
- Nearly two thirds of Asian population is expected to live in urban areas in 2050, over 80 % in Eastern and Western Asia


Sources: Bundeszentrale für politische Bildung / United Nations, Department of Economic and Social Affairs, Population Division (2018). World Urbanization Prospects: The 2015 & 2018 Revision, Online Edition; OECD;

Market Overview: Asia Vehicle Market & Mobility Behaviour


Vehicle Market

Car ownership varies extremely between different countries:

 APAC market for electric three-wheelers is expected to grow up to \$12 B by 2023:

Source: PWC. Pew Research Centre (2014)

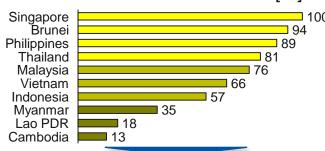
 Top 5 motorcycle markets by revenue are Asian, lead by India and China

Mobility Behaviour

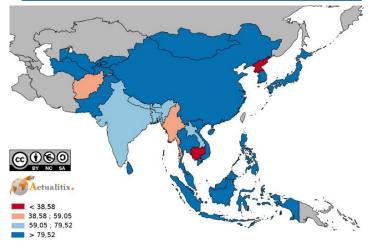
- Especially Southeast Asian megacities suffer from congestion
 - Daily congestion in Jakarta causes estimated costs of \$6.5 B per year
 - Jakarta, Ho Chi Minh City and Hanoi opened or are building up rail transport services for commuters aiming to reduce road traffic
- Asia has a fast growing digital start up scene with players as GoJek (picture) or Grab offering alternatives to public mass transport and individual vehicle usage
- Their approach is different from companies in other parts of the world: instead of a transport-only app they are aiming to provide a "superapp" with a multi-service ecosystem


Market Overview: Asia

Infrastructure

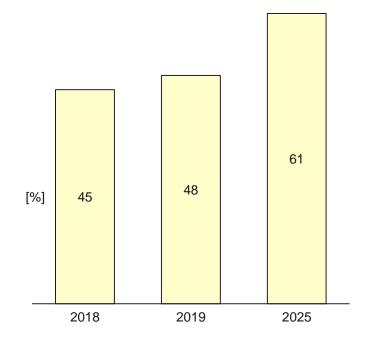

A

Road Traffic Infrastructure


Source: United Nations ESCAP

Paved Roads in South East Asia [%]:

- No comprehensive highway network
- Still wide areas with high shares of unpaved roads


Access to Electricity (% of Population)

Source: Actualitix.com

Mobile Internet Access

Percentage of population using mobile internet:

- While China and Southeast Asia show good availability of electricity there are still states including India without comprehensive supply
- More than one third of population is not expected to have mobile internet access in 2025

Market Overview Asia & Africa: Summary Key Challenges and Main Requirements

Challenges:

Source: Luc Gnago/Reuters

Source: AFP

Source: stock.adobe.com

Source: Bay Ismoyo/AFP/Getty Images

Source: naiialoaded.com

Infrastructure: No comprehensive

comprehensive electricity supply and paved road network Low incomes, high mobility demand: In Lagos, commuters spend on average 40 percent of their income on transportation Green house gases: Motorised transport is the fastest growing source of CO2 emissions in Africa Air and noise pollution: High emissions from ICE powered vehicles Congestion:
As a result of
growing
urbanisation,
South Africans
lose 90 hours/year
sitting in traffic

Safety: 19 % of global traffic deaths occur in Africa; Motorcycle taxis banned from Lagos due to safety concerns

Requirements:

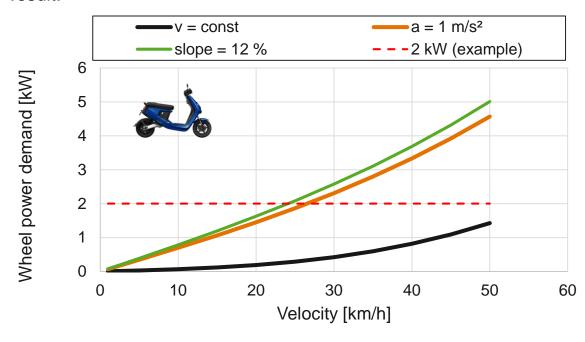
- Compatibility with various charging and battery swap systems
- Robust chassis layout

- Affordable prices and low TCO
- Low maintenance requirements
- CO2 neutral production (components, vehicles, energy)
- Recycling strategy
- Competitive usability to enable shift to electric vehicles
- Suitability for shared mobility services
- Compact vehicle dimensions
- Safe body structure and reliable components
- Mandatory personal safety equipment

Agenda

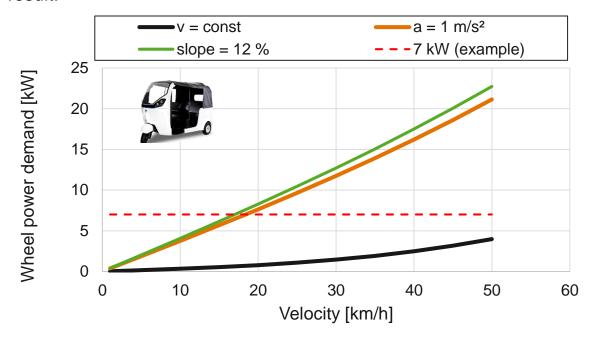
- Introduction
- Market Overview
- Technical Solutions

Technical Solutions


Power Demand of Micro Mobiles

Power Demands of Electric Two-Wheelers

For an exemplary electric two-wheeler, the following power demands result:



- A constant speed of ~ 50 km/h requires around 1.5 kW power at the wheel
- Due to additional friction within the drivetrain, electric motor power for electric two-wheelers with $v_{max} \sim 50$ km/h is typically around 1-2 kW (depends on vehicle mass)

Power Demands of Electric Three-Wheelers

For an exemplary electric three-wheeler, the following power demands result:

- A constant speed of ~ 50 km/h requires around 5 kW power at the wheel
- Due to additional friction within the drivetrain, electric motor power for electric three-wheelers with $v_{max} \sim 50$ km/h is typically around 5-7 kW (depends on vehicle mass)

Technical Solutions

Benchmarking: Technical Vehicle Specifications

Three-wheeler market is lead by Indian and Chinese players for both electric and ICE powered vehicles.

			Electric powered			ICE powered	
	Niu NQi	Terra Motors Y4A	SpeeGo CR	Omega Seiki Singha Max	GMW Taskman SmartAuto	Bajaj RE	Piaggio Ape Classic
Production	China	India	India	India	India	India	Italy / India
Use Case	Passenger transport	Passenger transport	Cargo transport	Cargo transport	Cargo transport	Passenger transport	Cargo transport
Power	1.8 kW (2.4 max)	1 kW	1.62 kW	6 kW	4.5 kW	7.6 kW (ICE)	6.2 kW (ICE)
V _{max}	45 km/h	25 km/h	25 km/h	60 km/h	55 km/h	n.a.	45 km/h
Electric range	50-70 km	n.a.	90 km	100 km	110 km		
Charging time	7 h	8-12 h	8-10 h	3 h	3 h		
Battery type	Li-Ion, 29 Ah	n.a.	n.a.	Li-lon, 10 khW	Li-lon, 7 kWh	8 I fuel tank	10.5 I fuel tank
Seats / Load capacity	2	5 seats	1 seat + 310 kg load capacity	1 seat + 460 kg load capacity	1 seat + 500 kg load capacity	4 seats (load capacity 310 kg)	1 seat + 750 kg load capacity
	*			4			

Electric powered

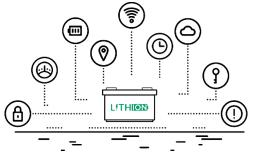
Sources: EVreporter.com, bajajauto.com, piaggiocommercialvehicles.com, speegovehicles.com, terramotors.in, pcqs-china.com; Pictures: EVreporter.com, bajajauto.com, piaggiocommercialvehicles.com, terramotors.in, pcqs-china.com, niu.com

Technical Solutions

Vehicle Innovations on Asian and African Market

Battery-as-a-Service

- Example: MAXe (Nigeria)
- Development of an electric motorcycle with detachable battery and built up of battery swap stations



Source: max.ng

Source: max.ng

- Example: Lithion (India)
- India's largest Battery-as-a-service provider
- Provides batteries at its swapping stations for electric motorcycles and three-wheelers

Maintenance-free Electric Scooter

- Example: Chetak electric scooter (India)
- Chetak promises maintenance-free and self optimising powertrain
- OEM provides guarantee on battery for up to 50,000 km
- Complete vehicle is IP67-rated (water resistant)
- Scooter comes with reverse gear

Source: chetak.com

Connected Electric Motorcycle

- Example: Ather 450 (India)
- Scooter comes with 7" touchscreen dashboard and Android OS
- Connected via mobile smartphone app
- OTA software updates

Source: bikewale.com

153590 · 20gwi0027.pptx Slide No. 19 2020/11/16 © ika 2020 · All rights reserved

Summary

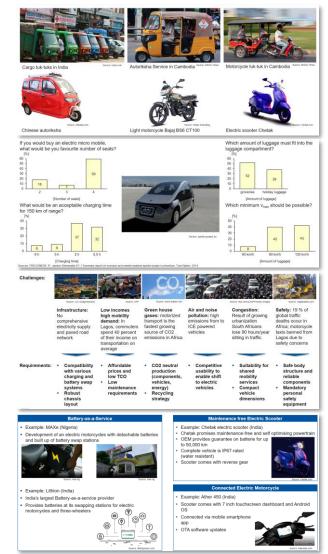
Questions to be Answered within This Webinar

Which types of vehicles will this webinar focus on?

 Focus lays on electric powered light two- and threewheelers as motorcycles and autorikshas

- What are relevant requirements from a user and technical perspective?
- Transport of up to four people with small luggage
- Daily charging time should be below two hours
- v_{max} should be sufficient for interurban usage (up to 60 km/h)

 What are general market characteristics and which requirements do they imply?



- Safe, durable and affordable construction with low CO₂ footprint
- Compatibility with local charging infrastructure
- Suitability for commercial shared mobility usage

Which requirements result from existing vehicles and mobility services?

- Required power and max. speed depends on area of application (urban vs. interurban)
- Electric mobility and digitization offer new possibilities for innovative business models

Contact

Nikolai Falter M.Sc.

Institute for Automotive Engineering (ika) RWTH Aachen University Steinbachstr. 7 52074 Aachen Germany

Phone +49 241 80 25686 Fax +49 241 80 22147

Email nikolai.falter@ika.rwth-aachen.de

Internet www.ika.rwth-aachen.de